back to search
BACK TO
SEARCH RESULTS

Asset Detail:

Predicting Von Hippel-Lindau mutation in kidney tumors using radiomic features

Asset Detail:

Predicting Von Hippel-Lindau mutation in kidney tumors using radiomic features
Overview
ASSET LINK: https://modac.cancer.gov/assetDetails?dme_data_id=NCI-DME-MS01-98736721
PROGRAM NAME: NCI Data Challenges
STUDY NAME: NCI Cancer Research Data Commons (CRDC) Artificial Intelligence Data-Readiness (AIDR) Challenge
ASSET NAME: Predicting Von Hippel-Lindau mutation in kidney tumors using radiomic features
ASSET PATH: /NCI_DOE_Archive/challenges/crdc_aidr_challenge/jeff_van_oss_tier2_submission
Asset Attributes
  ATTRIBUTE VALUE
ASSET NAME Predicting Von Hippel-Lindau mutation in kidney tumors using radiomic features
ASSET DESCRIPTION This asset contains the submission from Jeff Van Oss and team of BAMF Health, the second place winner of the 2024 AI Data Readiness Challenge for the NCI Cancer Research Data Commons (CRDC) Tier 2: Training an AI/ML model with multi-modal data. In this tier, participants must train an AI/ML model utilizing data from more than one data class. Their submission focused on Category 3 (Diagnosis). General use case: Distinguish amongst different cancer subtypes. Specific use case: Use of radiological images from Imaging Data Commons and mutation data from The Cancer Genome Atlas to predict Von Hippel-Lindau (VHL) mutation status.
ASSET IDENTIFIER jeff_van_oss_tier2_submission
ASSET TYPE Model
MODEL DOMAIN classification
MODEL FRAMEWORK Scikit-learn
MODEL PLATFORM None
PLATFORM VERSION None
POC NAME Jeff Van Oss
POC EMAIL jeff.vanoss@bamfhealth.com
IS MODEL DEPLOYED No
COLLECTION SIZE 2.6 MB
CURATION STATUS Unverified

Asset Files

To download files, please login.

FILE/COLLECTION FILE SIZE ACTIONS
Back To Top